項目反應理論 (Item Response Theory,簡稱IRT) 包括以下軟體:
BILOG-MG, IRTPRO, and PARSCALE for Windows
IRTPRO for Windows 特色:
◊ 試題反應理論(IRT)可以應用在以下分析
- 編製測驗(量表)
- 測驗等化
- 建立題庫
- 組合測驗
- 電腦化適性測驗
這些軟體可作為題目分析以及分數估計等方面的重要工具,並且在各個領域被廣泛應用。
介紹 IRTPRO
IRTPRO,這是一項在目前的技術尖端的產品。該方案已於微軟的 Windows平台的 Windows7,Vista和 XP操作系統上經過廣泛的測試。
IRTPRO 數值引擎的重要區塊已同時並行運行多個核心。
IRTPRO 發展得到了NIH的SBIR計劃合同HHSN-2612007-00013C 題為:
MEDPRO:開發項目反應理論成果和行為測量軟體。
Technical Description
IRTPRO imports data from a variety of statistical software packages as well as importing data from fixed format data (.fixed), comma-separated (.csv), tab-delimited (usually .txt), and Excel (.xls) files. Whatever the original format, the imported data are saved to an IRTPRO data file with extension .ssig that is displayed visually as a spreadsheet, similar in appearance to an Excel spreadsheet.
IRT models for which item calibration and scoring are implemented in IRTPRO are based on unidimensional and multidimensional [confirmatory factor analysis (CFA) or exploratory factor analysis (EFA)] versions of the following widely used response functions:
o Two-parameter logistic (2PL) [with which equality constraints includes the one-parameter logistic (1PL)
o Three-parameter logistic (3PL)
o Graded
o Generalized Partial Credit
o Nominal
BILOG-MG 項目反應測試軟體
BILOG-MG 是適用於二元計分(對與錯)試題logistic模式之試題參數及考生能力之估計的套裝軟體。由美國 Scientific Software, Inc 發行,能處理單參數、二參數及三參數模式的資料。BILOG-MG 使用的統計法有可供選擇:
- 最大相似法(Maximum Likelihood)
- 後面期望的貝氏法(Expected A Posteriori)
- 後面最大的貝氏法(Maximum A Posteriori)
特色
- Graphical user interface
- Efficient analysis of binary items including multiple choice or short-answer items scored right, wrong, omitted, or not-presented
- Capable of large scale production analysis, and handling of multiple groups
- Performs item analysis and scoring of any number of subtests or subscales
- Non-equivalent groups equating
- Vertical equating of test forms
- Differential item functioning (DIF)
- Detection and correction for parameter trends over time (DRIFT)
- Calibration and Scoring of tests in two-stage testing procedures
- Estimation of latent ability or proficiency distributions
- Provision for items inserted in tests to estimate item statistics, but not included in calculation of examinee scores ("variant items")
- Item fit statistics, theoretical and empirical reliability
- Information curves and reliabilities for putative test forms
- Presentation quality IRT graphics, can be imported in Word, Access, etc.
- Detailed online HELP documentation includes description of interface, syntax, and examples.
PARSCALE 項目反應測試軟體
為應用最廣的IRT項目反應測試軟體系列之一
- 包含DIF of rating scale items
- 可以處理15種類別
- 可以選Samejima’s graded 反應模型或Masters’partial credit model反應模型
- 允許 額定比例項目及多重選項,可以用猜測或不用猜測
- 可處理多個子集合及子集合之權重
特色
- The flexibility and the wealth of information provided by this program have kept it in regular use by researchers around the world
- One, two, and three-parameter logistic models
- Samejima’s model for graded responses
- Master’s partial credit model
- Generalized partial credit model
- Analysis of rating scale items such as open-ended essay questions
- Analysis of multiple-choice items
- Differential item functioning (DIF)
- Analysis of mixtures of item types
- Rater’s-effect analysis
- Multiple-group polytomous item response models
- Presentation quality IRT graphics, can be imported in Word, Access, etc.
- Detailed online HELP documentation includes syntax and examples.
flexMIRT 最先進的 IRT 軟體
用於項目分析和測試評分的多層次、多維度和多組項目反應理論 (IRT) 軟體包。flexMIRT 將各種單維和多維項目反應理論模型(也稱為項目因素分析模型)以及診斷分類模型擬合到任意數量的組中的單級和多級數據。
特色
flexMIRT is easy to use
Windows-based flexMIRT® has a graphical user interface (GUI) and is available in both 32-bit and 64-bit versions. It has an intuitive syntax and can be run seamlessly in a command line mode for high volume production. The user’s manual demonstrates a variety of analyses with annotated input and output.
flexMIRT is flexible
Our IRT software can fit a wide variety of item-level models including 1PL, 2PL, 3PL, Graded Response Model, Generalized Partial Credit Model, and Diagnostic Classification Models. It is able to accommodate multiple dimensions, dependence within the data (i.e., multilevel), crossed random effects, covariates, and departures from normality in the latent trait(s).
flexMIRT is fast
As modern CPU architecture trends toward multi-core design, flexMIRT® uses parallel processing to further speed up computations by spreading the load automatically to the multiple available cores or processing units. When possible, flexMIRT® uses dimension reduction to automatically reduce the number of dimensions of integration for multidimensional or multilevel models.
flexMIRT can handle large datasets
A newly-designed memory allocation scheme helps flexMIRT® efficiently handle thousands of items and millions of respondents. Great for any size analysis where item response theory models are needed.